

Tetrahedron: Asymmetry 10 (1999) 2307-2310

Resolution of trans-(\pm)-2-(pyrrolidinyl)cyclohexanol and its methyl ether using boric acid and chiral 1,1'-bi-2-naphthol

Mariappan Periasamy,* C. Ramaraj Ramanathan and Nangunoori Sampath Kumar School of Chemistry, University of Hyderabad, Hyderabad-500 046, India

Received 18 May 1999; accepted 2 June 1999

Abstract

The trans- (\pm) -2-(pyrrolidinyl)cyclohexanol **1**, and its methyl ether **2** were resolved using chiral 1,1'-bi-2-naphthol and boric acid in THF or CH₃CN. X-Ray structural analysis was carried out for the diastereomeric complex **3** obtained using **2**. © 1999 Elsevier Science Ltd. All rights reserved.

Chiral amino alcohols are important compounds used widely in asymmetric synthesis as chiral ligands or chiral auxiliaries¹ and in medicinal chemistry as therapeutic agents.² These compounds are generally prepared from the naturally occurring α -amino acids. However, they can also be readily prepared through opening of epoxides followed by resolution using tartaric acid³ or binaphthyl phosphoric acid.⁴

During the course of our research efforts on the synthesis and application of chiral amino alcohols,⁵ we attempted the resolution of the amino alcohol 1, prepared through opening of cyclohexene oxide with pyrrolidine⁶ and its methyl ether 2 using tartaric acid and binaphthyl phosphoric acid, but these experiments did not yield fruitful results.

In recent years, we have developed resolution procedures for 1,1'-bi-2-naphthol, 1,2-diphenyl-1,2-ethanediol and 1,1,2-triphenyl-1,2-ethanediol using (S)-proline via preparation of diastereomeric inclusion complexes or borate complexes.⁷ It has also been observed that racemic 1,1'-bi-2-naphthol can be readily resolved using chiral α -methylbenzylamine in the presence of $B(OH)_3$ in solvents such as CH_3CN and THF through formation of the corresponding Brønsted acid–ammonium salt 3.⁷ Accordingly, in principle, it should be possible to resolve the racemic amine derivatives through preparation of such diastereomeric salts using chiral 1,1'-bi-2-naphthol; indeed, this was observed. It was found that the

^{*} Corresponding author.

resolution of **1** and **2** can be readily achieved using chiral 1,1′-bi-2-naphthol and B(OH)₃ in various solvents (Scheme 1). The results are presented in Table 1.

Precipitate
$$\frac{1. \text{ Ether / dil HCl}}{2. \text{ NaOH / Ether}}$$
 (+)-Isomer (±)

R=H, 1
R=CH₃, 2

Precipitate $\frac{1. \text{ Ether / dil HCl}}{2. \text{ NaOH / Ether}}$ (-)-Isomer (-)-Isomer

Scheme 1.

When the amino ether **2** and B(OH)₃ were used in a 3:1 ratio (Table 1, entries 7 and 8), (1*S*,2*S*)-**2** was obtained in a higher ee with lower chemical yield from the precipitate fraction. Also the (1*R*,2*R*)-**2** was obtained in a lower ee from the filtrate fraction. Enrichment of the partially resolved amino ether **2** was also carried out following this procedure (Scheme 1). The maximum $[\alpha]_D^{25}$ value obtained was +41.4. No further enhancement of the $[\alpha]_D^{25}$ value was obtained when samples with $[\alpha]_D^{25}$ =+41.4 were used.

Table 1
Resolution of 1 or 2 using (R)- or (S)-1,1'-bi-2-naphthol and boric acid

S		1,1'-Bi-2-		Chiral 1 or 2 obtained from			
No	Substrate Naphthol		Solvent	Precipitate		Filtrate	
	% ee	R or S		% eea/Conf.	Yield (%)b	% eea/Conf.	Yield (%)b
1 ^c	1, 00	S	MeOH	67 (1 <i>R</i> ,2 <i>R</i>)	20	22 (1 <i>S</i> ,2 <i>S</i>)	60
2^{d}	1 , 00	S	THF	38 (1 <i>R</i> ,2 <i>R</i>)	40	36 (1 <i>S</i> ,2 <i>S</i>)	45
3^{e}	(1 <i>R</i> ,2 <i>R</i>)- 1 , 38	S	THF	79 (1 <i>R</i> ,2 <i>R</i>)	40	11 (1 <i>R</i> ,2 <i>R</i>)	55
4^{f}	(1R,2R)-1, 79	S	THF	>99 (1 <i>R</i> ,2 <i>R</i>)	35	08 (1R,2R)	50
5 ^g	1 , 00	R	THF	49 (1 <i>S</i> ,2 <i>S</i>)	40	14 (1R, 2R)	50
6 ^h	2 , 00	R	MeOH	74 (1 <i>S</i> ,2 <i>S</i>)	20	18 (1 <i>R</i> ,2 <i>R</i>)	65
7i	2 , 00	R	CH_3CN	77 (1 <i>S</i> ,2 <i>S</i>)	41	65 (1 <i>R</i> ,2 <i>R</i>)	48
8 ^j	2 , 00	R	CH_3CN	83 (1 <i>S</i> ,2 <i>S</i>)	30	44 (1 <i>R</i> ,2 <i>R</i>)	63
9^k	(1 <i>S</i> ,2 <i>S</i>)- 2 , 83	R	CH_3CN	>99 (1 <i>S</i> ,2 <i>S</i>)	42	66 (1 <i>S</i> ,2 <i>S</i>)	42
10 ^l	(1 <i>R</i> ,2 <i>R</i>)- 2 , 67	S	CH ₃ CN	97 (1 <i>R</i> ,2 <i>R</i>)	43	37 (1 <i>R</i> ,2 <i>R</i>)	52

a. Based on the maximum $\left[\alpha\right]_D^{25}$ value +41.4 observed for 2 (1 was converted to 2 and the $\left[\alpha\right]_D^{25}$ was used to determine the ee). b. Yields of isolated products. c. (\pm) -1 (10 mmol), B(OH)3, (5 mmol) and (S)-(-)-1,1'-bi-2-naphthol (10 mmol) in MeOH (20 ml) were stirred for 6 hr at rt. d. (\pm) -1 (125 mmol), B(OH)3, (62.5 mmol) and (S)-(-)-1,1'-bi-2-naphthol (125 mmol) in THF (125 ml) were stirred for 6 hr at rt. e. (1R,2R)-1 (49.4 mmol, 38% ee), B(OH)3, (24.7 mmol) and S-(-)-1,1'-bi-2-naphthol (49.4 mmol) in THF (50 ml) were stirred for 6 hr at rt. f. (1R,2R)-1 (17 mmol, 79% ee), B(OH)3, (8.5 mmol) and (S)-(-)-1,1'-bi-2-naphthol (17 mmol) in THF (30 ml) were stirred for 6 hr at rt. g. (\pm) -1 (10 mmol), B(OH)3, (5 mmol) and (R)-(+)-1,1'-bi-2-naphthol (10 mmol) in THF (20 ml) were stirred for 6 hr at rt. h. (\pm) -2 (10 mmol), B(OH)3, (5 mmol) and (R)-(+)-1,1'-bi-2-naphthol (10 mmol) in MeOH (40 ml) were stirred for 12 hr at rt. i. (\pm) -2 (19 mmol), B(OH)3, (9.5 mmol) and (R)-(+)-1,1'-bi-2-naphthol (19 mmol) in CH3CN (70 ml) were refluxed for 12 hr. j. (\pm) -2 (60 mmol), B(OH)3, (20 mmol) and (R)-(+)-1,1'-bi-2-naphthol (40 mmol) in CH3CN (150 ml) were refluxed for 12 hr. k. (1S,2S)-2 (18.2 mmol, 83% ee), B(OH)3, (9.1 mmol) and (R)-(+)-1,1'-bi-2-naphthol (18.2 mmol) in CH3CN (80 ml) were refluxed for 12 hr. l. (1R,2R)-2 (10 mmol, 67% ee), B(OH)3, (5 mmol) and (R)-(-)-1,1'-bi-2-naphthol (10 mmol) in CH3CN (40 ml) were refluxed for 12 hr.

The enantiomeric excess of the amino ether **2** with $[\alpha]_D^{25}$ =+41.4 was analysed to be >99% by ¹H NMR (400 MHz) analysis in CDCl₃ using (*S*)-(+)-binaphthyl-2,2'-diyl phosphoric acid.⁸

X-Ray structural analysis⁹ of the crystal of the complex obtained in the amino ether resolution experiment (Table 1, entry 8) was carried out. It revealed that the 1,1'-bi-2-naphthol forms a Brønsted acid with boric acid, which in turn gives diastereomeric salt 3 with the amino ether 2. The complex 3 crystallised along with three CH₃CN molecules. The ORTEP diagram of the crystal structure is shown in Fig. 1.

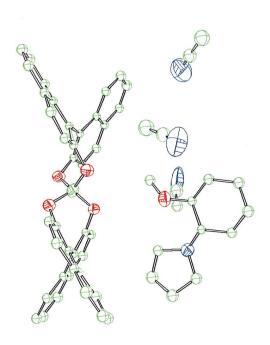


Figure 1. ORTEP diagram for complex 3

Suitable crystals for X-ray analysis could not be obtained in the case of the diastereomeric complex prepared using amino alcohol 1. In this case, there is a possibility of the formation of a Lewis acid complex of the type 4.¹⁰ However, the IR spectrum of the diastereomeric complex obtained from 1 exhibited an OH absorption at 3410 cm⁻¹, indicating that the complex formed here could also be the Brønsted acid complex 3.

Experimental procedure for the resolution of 2: (R)-(+)-1,1'-Bi-2-naphthol (40 mmol, 11.45 g), B(OH)₃ (20 mmol, 1.24 g) and the racemic amino ether 2 (60 mmol, 11 g) were refluxed in CH₃CN (150 ml) for 12 h. The reaction mixture was cooled to room temperature and filtered. The precipitate was suspended in a mixture of ether (80 ml) and dil. HCl (1N, 80 ml) and stirred until complete dissolution occured. The (R)-(+)-1,1'-bi-2-naphthol was recovered from the ether layer. The aqueous layer was treated with NaOH/ether and the free amino ether was extracted with ether (3×50 ml). The combined organic extracts were washed with saturated brine, dried over anhydrous magnesium sulphate and evaporated to dryness to obtain (1S,2S)-2, 3.3 g, 83% ee (30% yield). The filtrate was concentrated and the residue was taken up in a mixture of ether (80 ml) and dil. HCl (1N, 80 ml) followed by workup as outlined above to obtain (1R,2R)-2, 6.9 g, 44% ee (63% yield). After further enrichment of the sample with 83% ee following the same procedure, (1S,2S)-2 with >99% ee (42% yield) was obtained from the precipitate fraction (Table 1, entry 8). The filtrate fraction after workup gave the amino ether (1S,2S)-2, with 67% ee (42% yield).

Acknowledgements

We are thankful to the UGC, New Delhi for support under the Special Assistance Programme. C.R.R. and N.S.K., respectively, thank UGC and CSIR, New Delhi for financial support. X-Ray analysis was carried out using the National Single Crystal X-Ray Facility, School of Chemistry, University of Hyderabad, funded by DST, New Delhi.

References

- 1. Ager, D. J.; Prakash, I.; Schaad, D. R. Chem. Rev. 1996, 96, 835.
- 2. Rogers, G. A.; Parsons, S. M.; Anderson, D. C.; Nilsson, L. M.; Bahr, B. A.; Kornrench, W. D.; Kaufman, R.; Jacobs, R. S.; Kirtman, B. J. Med. Chem. 1989, 32, 1217.
- 3. Mousseron, M.; Granger, R. Bull. Soc. Chim. Fr. 1947, 14, 850.
- 4. Jacques, J.; Fouquey, C.; Viterbo, R. Tetrahedron Lett. 1971, 48, 4617.
- 5. Periasamy, M.; Kanth, J. V. B.; Prasad, A. S. B. Tetrahedron 1994, 50, 6411.
- 6. Compound 1 was prepared following a reported procedure: Radesca, L.; Bowen, W. D.; Paolo, L. D.; de Costa, B. R. *J. Med. Chem.* 1991, *34*, 3058. Compound 2 was prepared from 1 through reaction with NaH/CH₃I and the structure was confirmed using IR, NMR and mass spectral analysis.
- 7. (a) Periasamy, M. *Pure Appl. Chem.* **1996**, *68*, 663 (presented at the IUPAC International Conference in Organic Synthesis (ICOS 9), December 11–16, 1994, Abstract No. SL 36, Bangalore, India). (b) Periasamy, M.; Prasad, A. S. B.; Kanth, J. V. B.; Reddy, Ch. K. *Tetrahedron: Asymmetry* **1995**, *6*, 341. (c) Venkatraman, L.; Periasamy, M. *Tetrahedron: Asymmetry* **1996**, *7*, 2471. (d) Periasamy, M.; Venkatraman, L.; Thomas, K. R. J. *J. Org. Chem.* **1997**, *62*, 4302. (e) Periasamy, M.; Ramanathan, C. R.; Prasad, A. S. B.; Kanth, J. V. B. *Enantiomer* **1998**, *3*, 3. (f) Ramanathan, C. R.; Periasamy, M.; *Tetrahedron: Asymmetry* **1998**, *9*, 2651. (g) Periasamy, M.; Venkatraman, L.; Sivakumar, S.; Kumar, N. S.; Ramanathan, C. R. *J. Org. Chem.*, in press. (For related work by Zhao, D. et al. see Ref. 10 and the references cited therein.)
- 8. Shapiro, M. J.; Archinal, A. E.; Jarema, M. A. J. Org. Chem. 1989, 54, 5826.
- 9. Crystal structure analysis: The X-ray diffraction measurements were carried out at 293 K on an automated Enraf–Nonius MACH 3 diffractometer using graphite monochromated Mo-K α (λ =0.71073 Å) radiation. Intensity data were collected by the ω -scan mode. The data were reduced using the XTAL programme. No absorption correction was applied. The θ range for data collection is 1.54 to 24.97°. Crystal structure data: empirical formula $C_{57}H_{54}BN_4O_5$, colourless rectangular prism $(0.3\times0.3\times0.4\text{ mm})$, crystal system is orthorhombic, space group $P2_12_12_1$, unit cell dimensions: a=11.343(4) Å, b=16.169(6) Å, c=26.395(4) Å. Volume 4841(2) ų, Z=4, D_{calc} =1.216 Mg/m³, absorption coefficient is 0.077 mm⁻¹, F(000)=1876, index ranges $0 \le h \le 13$, $0 \le k \le 19$, $0 \le l \le 31$, total reflections collected were 4823 out of which 4736 were independent reflections with R(int)=0.0069 and R(sigma)=0.0941. The structure was solved by direct methods and refined by a full-matrix least-squares procedure using the SHELX 86 and SHELX 97 programme package, respectively. The refinement was carried out using 4736 observed [F>4 σ (F)] reflections and converged to a final R1=0.0655, w2=0.1268 and goodness of fit was 1.013 with the largest difference between peak and hole 0.231 and -0.196 e Å⁻³, respectively. Detailed X-ray crystallographic data are available from the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge, CB2 1EZ, UK.
- 10. Shan, Z.; Xiong, Y.; Li, W.; Zhao, D. Tetrahedron: Asymmetry 1998, 9, 3985.